AUTHOK TITLE	Claus, Richard N.; Quimper, Barry E. Compensatory Education Product Evaluation: Academic Achievement (A2) and Prevention Programs (P2) 1986-1987. Evaluation Report.
INSTITUTION	Saginaw Public Schools, Mich. Dept. of Evaluation Services.
PUB DATE	Jul 87
NOTE	53p.; For related document, see ED 281851.
PUB TYPE	Reports - Evaluative/Feasibility (142)
EDRS PRICE	Mr01/PC03 Plus Postage.
DESCRIPTORS	Acadenic Achievement; *Compensatory education;
	*Educational Improvement; *Educationally
	Disadvantaged; Elementary Secondary education;
	Incentives; *Inservice rducation; Mathematics
	Instruction; Parent Participation; Pilot Projects;
	*Program Effectiveness; Reading Instruction; Scores
IDENTIFIERS	Education Consolidation Improvement Act Chapter 1; *Saginaw City School System MI

Abstract

This evaluation report describes and assesses a compensatory education delivery syste in the school district of Saginaw, Michigan. Three reading and math programs, for selected grades between grade 1 and grade 9, had the following goals: (1) to provide intensive academic instruction to the educationnily disadvantaged; (2) to involve parents in the program; (3) to supply students with incentives for academic improvement; (4) to operate staff inservice programs; (5) to measure academic growth; and (6) to prepare students to effectively meet the academic competition of the general classroom. The 1986-87 delivery system showed a decreese from the previous year in the percentage of participants who achieved grade level in reading. There was some improvement in the percentage who achieved grade level in math. The overall results remained strong. The following recommendations were made: (l) comunications should be improved among all involved in compensatory education programs; (2) there must be more inservice activities; (3) there must be graater recognition and rewards for excellence for both students and teachers; (4) student cesting and selection procedures must be improved; and (5) efforts must be made to reduce variations in the program between building sites. Statistical data are presented in four tables and three appendices. (VM)

[^0]
Compensatory location product evaluation:

ACADEMIC ACAILNE,

PREVENTION (P^{2}) PROGRAMS
1986-1987

DEPARTMENT OF EVALUATION SERVICES

- PROVIDING ASSESSMENT', PROGRAM EVALUATION AND RESEARCH SERVICES -

Saginaw Public Schools
U.8. DeparTment of EOUCATHON Once of Educational Research and Improvement EDUCATOMAL RESOURECESINFORMATION CENT (ERIC)
Xenia document nee been reproduced es received from the person or organization resolved from
O Minor chencose ne x woduction dually

Saginaw, Michigan bEST COPY Avaithbit 2
"PERMISSION TO REPRODUCE THIS material has been granted by

tC The educational resources information center (ERIC)."

COMPENSATORY EDUCATION PRODUCT EVALUATION:

aundmic achievpinar (${ }^{2}$) and PREVENTION (P^{2}) PROGRAMS

1986-1987

An Approved Report of the DIVISION OF ADMINISTRATION AND PERSONNEL Department of Evaluation, Testing and Research

Evaluation, Testing \& Research

Dr. Foster B. Gibbs, Superintendent and
Dr. Jerry R. Baker, Assistant Superintendent
for Administration and Personnel
School District of the City of Saginaw

TABLE OF COMTENTS

Page
PROGRAM DESCRIPTION 1
PROCEDURES FOR EVALUATION 4
PRESENTATION AND ANALYSIS OP DATA: PRODUCT 5
Product Data: Reading 5
Product Data: Mathematics 6
Product Data: Prevention Program (P2) 7
SUMMARI AND CONCLUSIONS 12
RECOMMENDATIONS 14
APPENDICES 18
Appendix A: 1986-87 Count of Program Participants 19
Appendix B: Achievement Data Related to Funding Sources 32
Appendix C: Mean Percentile Gain by Building and Grade for A11 2-4 Prevention Pupils in Reading and Mathematics Based on April-May: 1986 Pre- Testing and April-May, 1987 Fost-Testing on CAT (Spring to Spring) 38

LIST OF TABLES

Table Page
1 Attainment of the Performance Standardin Readingin Percentile Scores for Compensatory EducationParticipants, Grades l-95
2 Attainment of the Performance Standardin Mathe-matics in Percentile Scores for Ccmpensatory edu-cation Participants, Grades l-96
3 At tainment of the Performance Standardin Readingand Mathematics for Prevention Program Partici-pants, Grades 2-47
4 Mean Percentile Gain of Prevention Pupils JersusA Comparison Group of Pupils in Reading and Mathe-matics Based on April-May, 1986 Pre-Testing andApril-Maj, 1987 post-Testing on Cat (Spring toSpring)9
B. 1 Mean Percentile Gain by Building and Grade for All 1-6 Chapter 1 Pupils in Reading Based on April-May, 1986 Pre-Testing and April-May, 1987 Post-Testing on Cat (Spring to Spring) 32
B. 2 Mean Percentile Gain by Building and Grade for All Chapter 1 Pupils in Mathematics Based on April-May, 1986 Pre-Testing and April-May, 1987 Post-Testing on Cat (Spring to Spring) 33
B. 3 Mean Percentile Gain by Building for All $\mathbf{7 - 9}$Chapter 1 Pupils in Reading and Mathematics Basedon April-May, 1986 Pre-Testing and April-May,1987 Post-Testing on Cat (Spring to Spring)34
B. 4 Mean Percentile Cin by Building and Grade for All 1-6 Chapter l/articie 3 Pupils in Reading Based on April-May, 1986 Pre-Testing and April- May, 1987 Post-Testing on Cat (Spring to Spring) 35
B. 5 Mean Percentile Gain by Building and Grade for Based on April-May, 1986 Pre-Testing and April- May, 1987 Post-Testing on CAT (Spring to Spring) .. 36

L_ST OF TABLES (CONTIMUED)

TablePage
B. 6 Mean Percencile Gain by Building for All 7-9 Chapter l/Article 3 Pupils in Reading and Mathe- atics Based on April-May, 1986 Pre-Testing and April-May, 1987 Post-Testing on Cat (Spring to Spring) 37
C. 1 Mear Percentile Gain by Building and Grade for All 2-4 Prevention Pupils in Reading and Mathe- matics Based on April-May, 1986 Pre-Testing and April-May, 1987 Post-Testing on CAT (Spring to Spring) 38

PROGRAM DESCRIPTIOA

The School District of the City of Saginaw operated a compensatory education delivery systen in reading and mathematics consisting of three programs--Elementary Academe Achievement (A^{2}), Secondary Academic Achievement (A^{2}), and the Prevention Program (P^{2}). The elementary A^{2} was a pull-out program (periodically taking students out of regular classrooms) that involved approximately 2,029 students ingrades one through six. The secondary A^{2} was a self-contained classioom program that involved 382 students ingrades seven through aine. Tbe A^{2} program was the primary compensatory education delivery system as it was the older, more well-established and larger of the delivery systems. It was funded by both the federal education Consolidation and Improvement Act (ECIA) Chapter land article 3 of the State School Aid Act.
p^{2} was a program that operated in regular classiooms with atudent teacher ratios of approximately 13 to 1. During this, the third year of the three year pllot effort, the program served some 202 youngsters ingrades two through four. p^{2} classrooms were housed at four elementary school sites (Nelle Haley, Heavenrich, Longfellow, and Jessie Rouse). It was funded by both ECIA Chapter 1 and General fund.

Sumarized in the chart below are demographic characteristics that describe both the elementary and secondary levels of A^{2} and elementary F^{2} in greater detail.

DEMOGRAPHIC CHARACTERISTICS OF THE ACADEMIC ACHIEVEMEHT AND PREVEATION PROGRAMS

Progran	Grade Levels Served	$\begin{gathered} \text { Approxinate } \\ \text { Number of } \\ \text { Students Served } \end{gathered}$	Nunber of Full-Time Equivalent Teachers	Number of Full-Tine Equivalent \qquad Aides	Number of Elementary Sch Sites	Program Setting*	$\begin{gathered} \text { Instructional } \\ \text { Services } \\ \hline \end{gathered}$
Academic Achievement, Elementary	1-6	2,029	32.0	4.5	23	Pul1-out	- Reading - Mathematics
Acadenic Achievement, Secondary	7-9	382	8.6	0.0	3	Self-Contained Classroom	- Reading - Mathematics
Prevention, Elementary	2-4	202	17.0**	0.0	4	Self-Contained Classroom	- Reading - Mathematics
*St udents in inta the confines of compensatory ins	t class he clas ruction	ooms receive 75\% room, while stud outside the conf	r more of ts in the es of thei	heir compe 11-out pr regular c	tory educa ram receive 8 room 。	ion instr 75\% or mo	ion within of their
$\begin{array}{r} * 0 f \text { the } 17 \text { full-t } \\ \text { funded by ECIA } \end{array}$	me equi apter 1	lent teachers,	5 are fund	by Gener	Fund sour	and the	cer 8.5 are

As can be seen from the chart above, the primary purpose of the programs was to improve the reading and mathematics achievement of a designated number of educationally disadvantaged children. The children in the program were screened for entry with the California Achievement Tests (CAT). This year approximately 2,613 pupils participated in the compensatory education programs. A count of students by building, grade, and funding source can be found in Appendix A.

The broad goals of these programs are to: 1) provide intensive academic instruction to the educationally disadiantaged, 2) involve parents in the program, 3) supply students with incentives for academic improvement, 4) operate staff inservice programs, 5) measure academic growth, and 6) prepare students to effectively meet the academic competition of the general classroom. These zoals are the focus of the Compensatory Educaifinn Departmenters activities throughout the $1986-87$ school year.

PROCEDURES FOR EVALUATION

Both process and product evaluations were undertaken for the compensatory education delivery system consising of $4^{\mathbf{2}}$ and $\mathrm{P}^{\mathbf{2}}$. This year's process evaluation was accomplished by distributing and analyzing a set of needs assessment questionaires which were shared with all compensatory education teachers, a sample of regular education teachers, and each principal at the compensatory education buildings. The instruments were distributed to the respondents on December 4, 1986. Completed instruments were last received from respondents on January 19, 1987. The results of this process needs assessment were presented in a separate report published and ifsaminated earlier in the year.

The product evaluation, which is the focus of this report, addresses the results of student test performance. The California Achievement Tests (CAT) for grades $1-9$ served as the evaluation instruments. These tests were administered cna pretest basis in the Spring, 1986 (CAT Form-C) and on a post-test basis in Sprirg, 1987 (CAT Form-E). These two forms wers used and equated.

Mean pre- to post-test score comparisons were used to evaluate the effectiveness of the delivery systems. The agreeu upon standard was an improvement of post-test over pre-test percentile scores. The reading and then the mathematics results for the entire compensatory education's delivery system (A^{2} and p^{2} combined) will be presented. Following that will appear the fert score results separately.

PRESEATATIOA ARD ANALISIS OF DATA: PRODUCT

The primary goal of compensatory education was to increase reauing and mathematics achievement. The data presented in this section wiil indicate the extent to which this goal was achieved. Reading and then mathematics data by grade are presented below. These results are followed by a comparison of the outcomes for p^{2} in both subjects. The achievement results by school are presented In Appendix B.

Product Data: Reading

The pre- and post-test results for reading are presented in Table 1. These data reflect the impacts of both A^{2} and p^{2} programs combined.

TABLE 1. ATPAMMEAT OF TRIE PRROMAYCE STANDARD IN READING IN PERCENIILE SCORES FOR COAPEASATORY EDUCATION PARTICIPANTS, GRADES 1-9.

Spring to Spring Comparisons by Grade	Number of Students Pre- and PostTested	Percentile			Performance Standard* Attained
		Pre Mean	Post Mean	Mean Gain	
1	56	2.2	34.0	31.8	Yes
2	289	7.6	18.9	11.3	Yes
3	310	14.6	23.8	9.2	Yes
4	304	17.5	23.1	5.6	Yes
5	253	16.8	19.5	2.7	Yes
6	339	13.9	20.3	6.4	Yes
7	77	13.1	10.4	- 2.7	No
8	100	6.7	9.0	2.3	Yes
9	69	7.3	8.3	1.0	Yes

*Post-test percentile scores will evidence improvement over pre-test percentile scores.

A study of the seading results show that students met the performance standard at all grades except seven. At the seventh grade Ievel, the scores indicated an average loss of - 2.7 percentile uts between pre-and post-testings. At grade one, the larges gain (31.8 percentile points) was recorded. See Appendix B for the test results by building and funing source.

Product Data: Mathematics

Table 2 below presents the attainment of the performance standard for spring to spring data in mathematics. The data refleit the efforts of both A^{2} and P^{2} programs.

TABLE 2. ATTALMENT OP THE PEPROMAECE STANDARD IM MATBEMATICS IN PRECEITLE SCORES FOR COMPLASATORY BDUCATIOM PARTICIPAUIS, EADES 1-9.

Spring to Spring Comparisons by Grade	Number of Students Pre- and PostTested	Percentile			Performance Standard* Attained
		Pre Mean	Post Mean	Mean Gain	
1	44	10.6	57.6	47.0	Yes
2	203	18.6	35.2	16.6	Yes
3	279	17.9	35.1	17.2	Yes
4	219	25.6	30.3	4.7	Yes
5	196	16.2	32.8	16.6	Yes
6	195	17.9	39.0	21.1	Yes
7	46	6.1	13.7	7.6	Yes
8	65	9.2	10.6	1.4	Yes
9	45	6.6	8.4	1.8	Yes

[^1]A review of mathematics results reveals that students met the performance standardinall grades. The gain score at the first grade level, indicated the largest improvement (47 percentile points) between pre- and post-testings. At the eighth grade, the smallest percentile gain (1.4 points) was observed. See Appendix B for the test results by building and funding source.

Product Data: Prevention Progran (P2)

Table 3 below presents the pre-to post-test results for p^{2} pupils in both reading and mathematics.
table 3. attaimerer of tar preporhance stardard in reading AID MATHEMATICS POR PRENEMTIOM PROGRAM PARTICIPAITS, GRADES 2-4.

Spring to Spring Comparisons by Subject Area and Grade	Number of Students Pre- and PostTested	Percentile			Performance Standard* Attained
		Pre Mean	Post Mean	Mean Gain	
Reading					
2	66	6	22	16	Yes
3	69	18	33	15	Yes
4	58	17	21	4	Yes
Mathematics					
2	66	24	40	19	Yes
3	69	27	49	22	Yes
4	58				No

*Post-test percentile scores will evidence improvement over pre-test perceutile scores.

An examination of Table 3 reveals that the performance standard was attained in both reading and mathematics at all three
grade levels except for grade 4 in mathematics. See Appendix C for test results by building and grade.

Table 4 below presents the pre-t^ post-test results for p^{2} pupils contrasted with an A^{2} comparisongroup of pupils in reading and mathematics. The comparison group was randomly selected from similar A^{2} buildings at the beginaing of the school year. A $t-$ test showed no significant differences ($\mathcal{X}=.05$) between the pretest means by grade.

TAR-\& 4. mean percentile gain of prevention pupils versus a comparison group of pupils II READING AND MATHEMATICS BASED ON APRIL-HAY, 1986 PRETESTING AND APRIL-HAY, 1987 POST-TESTIIG ON CAT (SPRING TO SPRING).

As can be seen in Table 4 , all mean percentile gains were greater than zero except for $P^{\mathbf{2}}$ at grade 4 in mathematics (mean. gain $=-1$ percentile). Thus the comparison group in terms of the standard that post-test percentile scores will evidence improvement over pretest percentile scores showed one more positive mean gain (6 of 6 cells or 100\%) than the experimental \mathbf{p}^{2} group (5 of 6 cells or 83.3\%).

The evaluation design for testing differences between experimental P^{2} and A^{2} Chapter 1 students was strengthened this year by adding a randoaly selected comparison group of A^{2} participants. As with the previous year, the "rule of ten" was employed as a me stringent standard of performance. The riule of ten" helps answer the question of how big a difference is needed before two group averages can be considered meaningfully different. The rule states that if a ten point difference between two group averages expressed in national percentile (NP) units is observed, it may then be concluded the difference is large enough to be meaningful.

The chart below presents the mean gain differences between experimental p^{2} and the comparison A^{2} groups, i.e., p^{2} mean $N P$ gain - A^{2} mean $N P$ gain $=$ mean $N P$ gain difference of P^{2}.

Mean $N P$ Gain Difference of $P^{2}-A^{2}$

	Grade 2	Grade 3	Grade 4	
Reading	7		12	0
Mathematics	16		11	-12

[^2]A perusal of the chart in light of the above 10 or more point standard for meaningful difference in terms of $\mathrm{p}^{\mathbf{2}}$ indi-. cates that three of the $s i x$ cells (grade 2 mathematics and grade 3 reading and mathematics) show $p^{\mathbf{2}}$ to have superior performance as compared to the A^{2} comparison group. The other three cells (grade 2 reading and grade 4 reading and mathematics) show no meaningful difference in favor of $P^{\mathbf{2}}$. In fact, $A^{\mathbf{2}}$ out gains $\mathrm{p}^{\mathbf{2}}$ in matheatics at grade 4 by 12 percentile points.

Overall, during the three years of piloting, the prevention Program (${ }^{2}$) does not appear to produce consistent positive results to justify continuing its implementation. The need for stronger controls on the nature of the program seemed evident from the start. Given the programes additional costs and lack of consistent and sizeable gains over the A^{2} program, it seems unwaranted to continue this pilot.

SUMMART AED CORCLOSIONS

The Chapter 1 and Article 3 Academic Achievement (${ }^{2}$) and Prevention Program (${ }^{\mathbf{2}}$) were designed to provide direct instructional services in reading and mathematics to some 2,613 students in grades one through nine. The main intent of the $A^{\mathbf{2}}$ and $p^{\mathbf{2}}$ programs was to improve the pupil's reading and/or mathematics achfevement. Instruction occurred primarily in small group settings outside of the regular classioonfor A^{2} at the elementarg level, and in a regular classioom setting with a reduced number of students for A^{2} at the secondary level and P^{2} in grades 2-4.

The 1986-87 compensatcry education delivery system showed a decrease from the previous year in terms of the percentage of grade levels meeting the standardin reading while the results improved in mathematics ($100 \% \mathrm{vs} .89 \%$ in reading and $89 \% \mathrm{ve} .100 \%$ in mathematics for 1985-8S and 1986-87 respectively). Overall, A^{2} results remain strong. Positive student achievement gains were realized again this year.

The $P^{\mathbf{2}}$ pilot showed an increase from the previous year in terms of the percentage of grade levels meeting the standardin reading while the results showed a decrease in mathematics (67% vs. 100% in reading and 100% vs. 67% in mathematics for $1985-86$ and 1986-87 respectively). A special analysis of p^{2} compared to an $A^{\mathbf{2}}$ comparison group showed that $P^{\mathbf{2}}$ showed meaningful differences in three of the six (50.0%) possible comparisons with A^{2}. This would seem to indicate that the pilot of $\mathrm{P}^{\mathbf{2}}$ should be stopped because of the absence of consistent positive results over the course of the three year p^{2} pilot.

The results of the pre- to post-testing of compensatory education students indicate that overall the greatest gains in reading were made at the first grade level, but that all grades attained the performance standarj except grade 7. Mathematics gains were again the greatest at grade l, but all grades met the standard.

As mentioned earlier, a process evaluation report was completed this year and is available from the Department of Evaluation, Testing and Research. The findings from that report as well as those cited above were used in helping develop the recomendations that folled.

RECOMHENDATIONS

Based on this year ${ }^{-1}$ process and product evaluations and a meeting with the program director, the following recommendations are offered in an effort to improve the implementation of the A^{2} program for 1987-88.

1. Further improve conmunications between all individuals invoived in the compensatory education effort. A number ofessential elements are needed.

- A more detalled written plan of all components of the compensatory education programs needs to be developed. It is suggested that the plan include both an activity timeline and $118 t i n g$ of duties of director, compensatory teachers, and evaluators. A clear statement of process and product objectives and priorities for each component of the various programs is also needed.
- The initial kick-off meeting should stress the following: essential elements of the program (e.g., number of pupils to be served, number of hours of service per pupil, nature of building level plans, budget for each program site, etc.), planned changes in delivery of services, packets of new materials, timelines and deadifnes, inservice schedule, inservice education's relationship to the program's goals and objective, parent activities, evaluation activities, observations by director, etc.
- A policy statement needs to be formulated and put into effect to include:
--Staff duties directly related to program goals.
- Allotment of staff time to ensure performance of duties.
- Selection of diagnostic-prescriptive tool to focus on students needs and corrective measures.
- Determination of equitable means of fund distribution to ensure adequate materials and supplies.
- Written material (e.g., brochures, flyers, newsietters, etc.) and public gatherings (e.g., assemblies, open houses, conferences, etc.) for parents need to be developed and carried out related to the purposes, rationale, and techniques used in the A^{2} program.

2. More compensatory education sponsored inservice activities. These activities might include:

- Establish a commityee of A^{2} teachers to plan and execute A^{2} inservices for compensatory and regular education staff. Topics for these sessions might include:
--Student monitoring techniques for secondary and elementary teachers that provide continuous feedback of progress to the student, as well as, the teacher.
- Reading and mathematics materials that are appropriate for secondary compensatory education students.
- Available computer software and its application to support compensatory aducation instruction at elementary and secondary levels.
--Techaiques to motivate secondary students to greater levels of achievement.
- Coordination of compensatory education instruction with other secondary teachers.
- -Articulation of objectives and teaching strategies between elementary and secondery.
- Explore means of encouraging attendance at professional conferences by granting conference days and compensating for expenses.
- Consider the possibility of conducting inservices for compensatory education parents in the area of parenting skills, the educational resources available to assist them in this parenting role, how to understand their child's test data, what can parents do to improve their child's behavior in school, and volunteer options for becoming involved in activities that support the instructional program.

3. Greater recognition and rewards for excellence. Excellence to be rewarded and/or recognized could include:

- Teaching excellence displayed by compensatory education instructors.
- Student accomplishrents for academic achievement and excellent behavior in the compensatory education progam are recognized in the regular classroom and school.
- Parents are told of student successes in the compensatory education program.

4. Improved student testing and student seiection procedures. Techniques to make improvements in this area might include:

- Create a system-wide testing inservice program on the appropriate methods of preparing students for taking standardized tests and the importance of following exact test directions to ensure useable results. This might be done in video form.
- Provide better inservice training to the building testing coordinators. This training should be very specific concerning the various tasks related to monitoring and coordinating the builiding level standardized testing program. The builiding level testing coordinator has a responsibility to inservice staff on how to adninister the cest in the standardized fashion and then monitor the administration in selected classes to check on the adequacy of the standardization achieved.
- Allow for teacher input as well as test data as valid means to determine the eligibility of needy students.

5. Reduce variations in Lhe program between building sites by having the director and compeasatory education staff analyze the building results presented in Appendix B. Hopefully, a plan can be formulated to reduce (or control) these variations in progran impact. Of course, in some instances it is understood that relatively poor performance was caused by unanticipated problems such as the extended illness of a key teacher, etc. To some extent, the above recommendations that increase cominaications relative to program definitions and operations willin part help reduce variations between program sites.

APPENDICES
min -

1986-87 COUNT OP PROGRAAA PARTICIPARTS

PROGRAM: Chapter 1, Total Participants

Building	\underline{K}	1	2	3	4	5	6	Total
E. Baillie	0	25	22	22	35	25	29	158
Coulter	0	24	20	20	12	12	25	113
Emerson	0	1	23	29	18	29	28	128
Fuerbringer	0	0	0	0	0	0	0	0
N. Haley	0	14	23	14	34	18	41	144
Handley	0	0	0	0	0	0	0	0
Heavenrich	0	6	30	16	24	20	27	123
Herig	0	0	0	0	0	0	0	0
Houghton	0	28	22	24	28	21	31	154
Je rome	0	0	0	0	0	0	0	0
Jones	0	3	14	30	17	21	22	107
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	7	39	44	40	26	33	189
Longstreet	0	14	15	14	10	5	21	79
J. Loomis	0	5	38	46	29	38	33	189
M. Park	0	0	0	0	0	0	0	0
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	0	0	0	0	0	0	0
Morley	0	17	20	24	13	22.	19	115
J. Rouse	0	5	21	30	17	12	17	102
Salina	0	17	16	17	17	14	20	101
Stone	0	0	0	0	0	0	0	0
Webber Elem.	0	14	32	41	27	34	36	184
21 lwaukee	0	0	0	0	0	0	0	0
TOTAL	0	18 C	33:	371	321	297	382	1,886

[^3]
PROGRAM: Chapter 1, Reading

Building	$\underline{\mathrm{K}}$	1	2	3	4	5	6	Total
E. Baillie	0	25	21	22	35	22	25	150
Coulter	0	18	13	15	8	11	23	88
Emerson	0	25	21	22	35	22	25	116
Fuerbringer	0	0	0	0	0	0	0	0
N. Haley	0	13	23	14	33	14	33	130
Handley	0	0	0	0	0	0	0	0
Heavenrich	0	6	30	15	19	17	26	113
Herig	0	0	0	0	0	0	0	0
Houghton	0	27	22	19	28	20	30	146
Jerome	0	0	0	0	0	0	0	0
Jones	0	3	14	24	16	18	16	91
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	6	36	32	35	23	23	155
Longstreet	0	14	15	13	10	3	20	75
J. Loomis	0	5	26	34	25	33	33	156
M. Park	0	0	0	0	0	0	0	0
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	0	0	0	0	0	0	0
Morley	0	17	13	12	5	13	11	71
J. Rouse	0	5	19	29	15	9	14	91
Salina	0	12	11	10	15	12	18	78
Stone	0	0	0	0	0	0	0	0
Webber Elem.	0	14	26	33	22	25	34	154
211waukee	0	0	0	0	0	0	0	0
TOTAL	0	166	292	293	282	249	332	1,614

*Counts of the Experimental Prevention Program are included in this count at the four effected elementaries. See later pages in this appendix for the counts of the Experimental Prevention Program separately.

1986-87 cOUIT OP PROGRAM PARTICIPARTS

PROGRAM: Chapter 1, Mathematics

Building	$\underline{\mathrm{K}}$	$\underline{1}$	2	3	4	5	6	Total
E. Baillie	0	16	6	5	15	14	9	65
Coulter	0	19	12	14	8	8	5	66
Emerson	0	1	7	19	7	15	9	58
Puerbringer	0	0	0	0	0	0	0	0
N. Haley	0	14	19	13	30	14	24	114
Handley	0	0	0	0	0	0	0	0
Heavenrich	0	6	27	14	23	14	18	102
Herig	0	0	0	0	0	0	0	0
Houghton	0	16	8	15	17	13	13	82
Jerome	0	0	0	0	0	0	0	0
Jones	0	3	10	23	5	14	13	68
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	4	31	39	28	9	21	132
Longstreet	0	2	5	11	6	4	8	36
J. Loomis	0	4	26	37	13	33	12	125
M. Park	0	0	0	0	0	0	0	0
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	0	0	0	0	0	0	0
Morley	0	0	15	43	13	15	14	77
J. Rouse	0	2	17	30	17	6	11	83
Salina	0	17	9	15	14	7	13	75
Stone	0	0	0	0	0	0	0	0
Webber Elem.	0	7	15	20	12	26	15	95
Zilwaukee	0	0	0	0	0	0	0	0
TOTAL	0	111	207	275	208	192	185	1,178

*Counts of the Experimental Prevention Program are included in this count at the four effected elementaries. See later pages in this appendix for the counts of the Experimental Prevention Program separately.

Building				Total
Central Junior	40	45	31	116
Arthur Eddy	37	46	35	118
North Intermediate	0	0	0	0
South Intermediate	0	0	0	0
Webber Junior	33	65	50	148
TOTAL	110	156	116	382

1986-87 codit or progral participants

PROGPM: Chapter 1, Reading

Building	7	8	9	Total
Central Junior	38	32	20	90
Arthur Eddy	28	35	31	94
North Intermediate	0	0	0	0
South Intermediate	0	0	0	0
Webber Junior	26	52	35	113
TOTAI.	92	119	86	297

PROGRAM: Chapter 1, Matheratics

Building	7	8	9	Total
Central Junior	20	29	14	63
Arthur Eddy	19	33	16	68
North Intermediate	0	0	0	0
South Intermediate	0	0	0	0
Webber Junior	25	31	32	88
TOTAL	64	93	62	219

1986-87 COUAT OP PROGRA PARTICIPANTS

PROGRAM: Article 3, Total Participants

Building	R	1	2	3	4	5	6	Total
E. Baillie	0	25	22	22	35	25	29	158
Coulter	0	24	20	20	12	12	25	113
Emerson	0	1	23	29	18	29	28	128
Fuerbringer	0	0	0	0	0	0	0	0
N. Haley	0	14	23	14	34	18	41	144
Handley	0	0	0	0	0	0	0	0
Heavenrich	0	6	30	16	24	20	27	123
Herig	0	1	3	9	5	9	2	29
Houghton	0	28	22	24	28	21	31	154
Je rome	0	8	20	11	18	12	15	84
Jones	0	3	14	30	17	21	22	107
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	7	39	44	40	26	33	189
Longstreet	0	14	15	14	10	5	21	79
J. Loomis	0	5	38	46	29	38	33	189
M. Park	0	6	9	6	20	6	8	55
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	10	5	24	9	8	10	66
Morley	0	17	20	24	13	22	19	115
J. Rouse	0	5	21	30	17	12	17	102
Salina	0	17	16	17	1\%	14	20	101
Stone	0	14	12	18	25	15	27	111
Webber Elem.	0	14	32	41	27	34	36	184
2ilwaukee	0	0	0	0	0	0	0	0
TOTAL	0	219	384	439	398	347	444	2,231

[^4]APPENDIX A

1986-87 COURT OP PROGRAM PARTICIPANTS

PROGRM: Article 3, Reading

Building	K	1	$\underline{2}$	3	4	5	6	Total
E. Baillie	0	25	21	22	35	22	25	150
Coulter	0	18	13	15	8	11	23	88
Emerson	0	1	23	21	16	29	26	116
Fuerbringer	0	0	0	0	0	0	0	0
N. Haley	0	13	23	14	33	14	33	130
Hand ley	0	0	0	0	0	0	0	0
Heavenrich	0	6	30	15	19	17	26	113
Herig	0	1	3	5	5	4	0	18
Houghton	0	27	22	19	28	20	30	146
Jerome	0	7	15	6	15	10	11	64
Jones	0	3	14	24	16	18	16	91
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	6	36	32	35	23	23	155
Longstreet	0	14	15	13	10	3	20	75
J. Loomis	0	5	26	34	25	33	23	156
M. Park	0	6	5	5	15	4	5	40
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	10	5	24	9	5	9	62
Morley	0	17	13	12	5	13	11	71
J. Rouse	0	5	19	29	15	9	14	91
Salina	0	12	11	10	15	12	18	78
Stone	0	13	11	18	25	14	17	98
Webber Elem.	0	14	26	33	22	25	34	154
211waukee	0	0	0	0	0	0	0	0
TOTAL	0	203	331	351	351	286	374	1,896

*Counts of the Experimental Prevention Program are included in this count at the four effected elementaries. See later pages in this appendix for the counts of the Experimental Prevention Program separately.

1986-87 COUIT OF PROGRAM PARTICIPAITS

PROERAM: Article 3, Matheratics

Building	R		2	3	4	5	6	Total
E. Baillie	0	16	6	5	15	14	9	65
Couiter	0	19	12	14	8	8	5	66
Emerson	0	1	7	19	7	15	9	58
Fuerbringer	0	0	0	0	0	0	0	0
N. Haley	0	14	19	13	30	14	24	114
Handley	0	0	0	0	0	0	0	0
Heavenrich	0	6	27	14	23	14	18	102
Herig	0	1	1	5	3	6	2	18
Houghton	0	16	8	15	17	13	13	82
Je rome	0	3	11	8	13	7	8	50
Jones	0	3	10	23	5	14	13	68
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	4	31	39	28	9	21	132
Longstreet	0	2	5	11	6	4	8	36
J. Loomis	0	4	26	37	13	33	12	125
M. Park	0	2	8	5	11	6	5	37
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	0	1	15	7	6	6	35
Morley	0	0	15	20	13	15	14	77
J. Rouse	0	2	17	30	17	6	11	83
Salina	0	17	9	15	14	7	13	75
Stone	0	9	7	6	15	12	23	72
Webber Elem.	0	7	15	20	12	26	15	95
2ilwaukee	0	0	0	0	0	0	0	0
TOTAL	0	126	235	314	257	229	229	1,390

*Ccunts of the Experimental Prevention Program are included in this count at the four effected elementaries. See later pages in this appendix for the counts of the Experimental Prevention Program separately.

1986-87 COUTT OP PROGRAM PARTICIPANTS

PROGRAM: Article 3, Total Partici 2ants

Building		$\underline{8}$	$\underline{9}$	Total
Central Junior	40	45	31	116
Arthur Eddy	37	46	35	118
North Intermediate	0	0	0	0
South Intermediate	0	0	0	0
Webber Junior	33	65	50	148
TOTAL	110	156	116	382

1986-87 COUIT OF PROGRAM PARTICIPAITS

PROGRAM: Article 3, Reading

Building	7	8	9	Total
			20	90
Central Junior	38	32	35	94
Arthur Eddy	28	35	31	0
North Intermediate	0	0	0	0
South Intermediate	0	0	0	113
Webber Junior	26	52	35	297

PROGRAM: Article 3, Mathematics

Euilding		8	$\underline{9}$	Total
		29	14	63
Central Junior	20	29	16	68
Arthur Eddy	19	33	0	0
North Intermediate	0	0	0	0
South Intermediate	0	0	32	88
Webber Junior	25	31	93	62

Building	K	1	2	3	4	5	6	Total
E. Baillie	0	0	0	0	0	0	0	0
Coulter	0	0	0	0	0	0	0	0
Emerson	0	0	0	0	0	0	0	0
Fuerbringer	0	0	0	0	0	0	0	0
N. Haley	0	0	15	10	27	0	0	52
Handley	0	0	0	0	0	0	0	0
Heavenrich	0	0	25	13	12	0	0	50
Herig	0	0	0	0	0	0	0	0
Houghton	0	0	0	0	0	0	0	0
Jerome	0	0	0	0	0	0	0	0
Jones	0	0	0	0	0	0	0	0
Kempton	0	0	0	0	0	0	0	0
Longfellow	0	0	15	22	11	0	0	48
Longstreet	0	0	0	0	0	0	0	0
J. Loomis	0	0	0	0	0	0	0	0
M. Park	0	0	0	0	0	0	0	0
C. Miller	0	0	0	0	0	0	0	0
J. Moore	0	0	0	0	0	0	0	0
Morley	0	0	0	0	0	0	0	0
J. Rouse	0	0	14	27	11	0	0	52
Salina	0	0	0	0	0	0	0	0
Stone	0	0	0	0	0	0	0	0
Webber Elem.	0	0	0	0	0	0	0	0
Z11waukee	0	0	0	0	0	0	0	0
TOTAL	0	0	69	72	61	0	0	202

SCHOOL	GRADE 1				GRADR 2				Grade 3				GRILE 4				Grade 5				GRADE 6			
	Number Tested	Pre Mean	Post Hean	Mean Gain/ Loss	Number Teated	Pre Mean	Post Mean	Mean Gain/ Loss	Number Tested	Pre Hean	Post Hean	Mean Gain/ Loss	Number Tested	Pre Hean	Post Mean	Mean Gain/ Loss	Number Tested	Pre Hean	Post Mean	Mean Gain/ Loss	Number Tested	Pre Hean	Post Hesn	Hean Gain/ Loss
Ballife	5	7	39	32	20	6	15	9	20	15	20	5	29	13	20	7	20	12	13	1	22	16	24	8
Coulter	1	11	39	28	11	9	16		15	20	23	3	6	11	12	1	9	20	20	0	21	24	26	2
Emeraon	1	11	43	32	22		10	3	19	9	15	6	14	18	23	5	27	16	16	0	25	13	26	7
Haley	1	1	62	61	19	17	37	20	10	21	23	2	29	18	36	18	14	26	26	0	33	17	26	9
Heavenrich	3	1	6	5	25	3	29	26	15	15	45	30	$1:$	18	15	- 3	14	13	15	2	24	15	16	1
Houghton	6	2	62	60	20		18	11	15	20	17	- 3	25	29	29	0	13	23	18	- 5	27	9	17	8
Jonea	3	1	26	25	14	7	15	8	22	16	15	- 1	14	15	15	0	16	15	16	1	14	16	18	2
Longfellow	2	5	18	13	33	9	26	17	29	17	29	12	29	16	24	8	22	17	26	9	2	11	16	5
Longstreet	2	1	23	22	13	5	13	8	10	17	18	1	9	15	20	5	2	20	17	- 3	17	30	32	2
Loomia	4	2	39	37	24		15	10	29	9	21	12	21	20	23	3	29	15	18	3	30	1,	15	2
Morley	-	-	-	--	11	11	16	5	12	12	45	33	5	13	15	2	10	21	15	-6	9	13	9	-4
Rouse	3	1	26	25	19	7	15	8	27	17	34	17		16	15	-1	9	20	21	1	12	15	29	14
Salina	2	18	62	44	11	34	21	-13	10	5	9	4	15	17	24	7	11	11	26	15	17	13	17	4
Webber Ele.	8	2	37	35	22	7	21	14	27	20	22	2	16	21	21	0	24	20	24	4	31	11	18	7
SYSTEM	41	2.2	32.1	29.9	253	7.3	11.3	4.0	260	14.6	23.1	8.5	243	17.5	21.6	4.1	220	16.5	18.9	2.4	304	12.6	19.5	6.9

40

TABLE B.3. MEAM PMCEIILS GATM BY BUILDIMG FOR AKI 7-9 CHAPIER 1 PUPILS IR READIMG ADD MARHEATICS BASED OA APRIL-HAY, 1986 PRE-TESTIEG AED APRIL-HAT, 1987 POST-TESTIMG OM CAT (SFRIMG TO SPRING).

SCHOCL	Grade 7				Grade 8				Grade 9			
	Number Tested	Percentiles			Number Tested	Percentiles			Number Tested	Percentiles		
		Pre Mean	Post Mean	$\begin{aligned} & \text { Mean } \\ & \text { Gain } \end{aligned}$		Pre Mean	Post Mean	Mean Gain		Pre Mean	Post Mean	Mean Gain
Reading												
Eddy	23	11	9	- 2	28	6	10	4	27	8	9	
Central	35	20	15	- 5	28	12	9	3	17	6	8	2
Webber	19	7	7	0	44	5	9	4	25	9	9	0
System	77	13.1	10.4	- 2.7	100	6.7	9.0	2.3	69	7.3	8.3	1.0
mathematics												
Eddy	9	8	12	4	23	15	16	1	14	9	9	0
Central	19	3	16	13	20	. 12	12	0	10	3	9	6
Webber	18		13	0	22	5	6	1	21	9	9	0
System	46	6.1	13.7	7.6	65	9.2	10.6	1.4	45	6.6	8.4	1.8

	GRade 1				GRADE 2				GRADE 3				Grade 4				GRADE 5				GRADE 6			
SCHOOL	Nuaber Tested	Pre Mesn	Post Hean	$\begin{aligned} & \text { Mean } \\ & \text { Gain/ } \\ & \text { Loss } \end{aligned}$	Number Tested	Pre Hean	Post Mean	Hean Gain/ Loss	Number Tested	Pre Mean	Post Mean	Hean Gain/ Loss	Numbe. Tested	Pre Mean	Post Mean	Mean Gain/ Loss	$\begin{aligned} & \text { Nunter } \\ & \text { Tested } \end{aligned}$	Pre Mean	Post Mean	$\begin{aligned} & \text { Hean } \\ & \text { Gain! } \\ & \text { Loss } \end{aligned}$	Number Tested			$\begin{aligned} & \text { Mean } \\ & \text { Cain/ } \\ & \text { Los: } \end{aligned}$
Ealllie	5	7		32	20	6	15	9	20	15	20	5	29	13	20	7	20	12	13		22	16		
Coulter	1	11	39	28	11	9	16	7	15	20	23	3	6	11	12	1	9	20	20	0	21	24		2
Emerson	1	11	43	32	22	7	10	3	19	9	15	6	14	18	23	5	27	16	16	0	25	13	20	7
Puerbringer	-	-	-	-	-	-7	-	$\overline{-}$		-	-	-	79	-	- 36	-	14	26	$\overline{26}$	0	33	17	26	9
Haley	1	1	62	61	19	17	37 29	20		13	43	30	17	18	15	- 3	14	13	15	2	24	15	16	1
Heavenrich	3	1	6 39	34	25 3	15	29 27	26 12	15	13	41	28	5	15	29	14	4	23	32	9	-	-	-	-
Herig	6	5	- 5	60	20	7	18	11	15	20	17	-3	25	29	29	0	13	23	18	- 5	27	9	17	8
Houghton	6	2	32	30	10	6	21	15	5	12	15	3	12	15	26	11	9	17	24	7	10	15	26	11
Jones	3	1	26	25	14	7	15	8	22	16	15	-1	14	15	15	0	16	15	16	1	14	16	18	2
Kempton	-	-	-	-	-	--	-	--	-	-	--	--	29	-	$\overline{24}$	-8	22	-17	$\overline{26}$	- 9	22	11	16	5
Longfellow	2	5	18	13	33	9	26			17	29 18		29	16	24	8 5	22	20	17	- 3	17	30	32	2
Longetreet	2	1	23	22		5	13		10	17	18 21	12	21	20	23	3	29	15	18	3	30	13	15	2
Loonds Park	4	2	39 47	37 46	13 3	5	15	10 27	29	15	31	22	14	18	41	23	3	23	15	-8	4	19	69	50
Miller	--	-	-		-	-	--	--	-	-	-	--	-	-	--	-	-	-	-		-	-	-	-
Moore	-	-	-	--	1	5	50	45	21		30	14	7	18	20	2	5	15	23	8	8	20		-9
Morley	-	-	-	-	11	11	16	5	12	12	45	33	14	13	15	- 2	10	21	15	-6	12	13	9 29	-14
Rouse	3	1	26	25	19		15	8	27		34		14	16	15	-1	11		21 26	15	17	13	17	4
Salina	2	18	62	44	11	34	21	-13 -6		5	24		15	17 18	29	11	12	20	23	3	13	5	20	15
Stone	3		50	41		16	$\begin{aligned} & 10 \\ & 21 \end{aligned}$			15	22	9 2	16	18	29 21	0	24	20	24	4	31	11	18	7
Webber Ele. Zilwaukee	8	2	37	35	22	7	21	14	27	20	22-	$\underline{2}$	16	21	$\underline{-}$	0			2		-	-	-	-
SYSTEM	56	2.2	34.0	31.8	289	7.6	18.9	11.3	310	14.6	23.8	9.2	304	17.5	23.1	5.6	253	16.8	19.5	2.7	339	13.9	20.3	6.4

SCHOOL	Grade 1				Grade 2				Grade 3				Crade 4				Grade 5				GRADE 6			
	Number Tested	Pre Mean	Post Hean	Mean Gain/ Lose	Number Tested	Pre Mesn	Post Hean	Hean Gain/ Lose	Number Tested	Pre Mean	Post Hean	Mesn Gain/ Loss	Number Tested	Pre Hean	Post Mean	Hean Gain/ Loss	Ruaber Tested	Pre Hesn	Post Mean	Mean Galn/ Loss	Number Tested	Pre Mean	Posit Mean	Mean Gain/ Loss
Ballife	3	60	70	10	5	27	54	27	5	24	29	5	13	16	37	21	13	18	21	3	8	20	37	17
Coulter	2	7	84	77	10	13	24	11	14	26	26	0	6	11	23	12	6	18	50	32	5	29	36	7
Emerson	1	15	54	39	7	16	7	-9	18	7	21	14	5	21	37	16	15	23	20	- 3	7	20	21	1
Puerbringer	--	-	-	--	--	--	-	-	-	-	-	-	--	--	--	-	-	-	-	-	--	--	--	--
Haley	2	13	83	70	15	36	52	16	9	41	37	-4	26	36	45	9	14	26	11	15	24	16	41	25
Heavenrich	3	1	15	14	24	18	56	38	14	30	37	7	20	13	11	-2	12	16	17	1	16	15	24	9
Herig	1	18	70	52	1	5	7	2	5	18	47	29	3	20	39	19	6	24	69	45	2	26	99	73
Houghton	3	9	81	72	6	29	15	-14	10	32	18	-14	14	56	63	7	6	24	37	13	12	24	34	10
Jerome	3	5	36	31	6	21	45	24	7	16	26	10	9	12	30	18	6	17	26	9	7	20	32	12
Jones	3	18	40	22	10	16	56	40	21	13	26	13	4	15	11	-4	13	17	34	17	10	15	29	14
Kempton	-	--	-	--	-	-	-	--	-	--	-	--	-	-	--	-	-	-	-	--	-	-	-	-
Longfellow	2	5	56	51	28	15	30	15	36	20	47	27	25	20	23	3	7	12	32	20	17	18	47	29
Longetreet	2	2	54	52	4	13	20	7		26	29	3	5	15	39	24	3	16	49	33		50	73	23
Loonis	3	5	39	34	23	10	11	1	32	8	26	18	9	15	41	26	29	8	32	24	11	18	26	8
Merrill Park	2	1	26	25	7	15	\cdots	47	3	17	45	28	11	15	54	39	5	26	36	10	4	6	50	44
Miller	--	-	--	--	--	--	-	-	-	-	--	-	-	-	-	--	--	--	--	-	--	--	--	--
Moore	-	--	-	--	-	\cdots	-	-	13	24	26	2	5	11	18	7	5	23	16	- 7	5	24	54.	30
Morley	-	-	-	-	13	15	72	57	19	21	73	52	13	15	32	17	12	37	63	26	9	32	45	13
Rouse	2	7	56	49	16	29	30	1	28	29	52	23	16	21	20	-1	6	5	32	27	9	15	29	14
Salina	2	47	69	22	9	62	21	-41	14	8	30	22	12	15	32	17	5	3	86	83	12	18	58	40
Stone	3	58	95	37	4	18	17	-1		15	11	-4	13	18	23	5	9	16	32	16	18	12	41	29
Webber ele.	7	6	62	56	15	10	49	39	18	18	37	19	10	15	26	11	24	16	32	16	13	13	23	10
Zilwaukee	-	--	-	--	--	--	-	--	-	--	--	--	--		-	-	--	-	-	-	--	--	--	-
SYSTEM	44	10.6	57.6	47.0	203	18.6	35.2	16.6	279	17.9	35.1	17.2	219	25.6	30.3	4.7	196	16.2	32.8	- 6.6	195	17.9	39.0	21.1

B
table b.6. kean preceritic chit by buildimg for all 7-9 chapter 1/article 3 pupils IH RBADIGG AMD MATRGMATICS BASED OX APRIL-MAY, 1986 PRE-TESTIEG AED APRIL-IAY, 1987 POSt-TESTIMG ON CAT (SPRING TO SPRIMG).

SCHOOL	Grade 7				Grade 8				Grade 9			
	Number Tested	Percentiles			Number Tested	Percentiles			Number Tested	Percentiles		
		Pre Mean	Post Mean	Mean Gain		Pre Mean	Post Mean	Mean Gann		Pre Mean	Post Mean	Mean Gain
READING												
Eddy	23	11	9	- 2	28	6	10	4	27	8	9	1
Central	35	20	15	- 5	28	12	9	3	17	6	8	2
Webber	19		7	0	44	5	9	4	25	9	9	0
System	77	13.1	10.4	- 2.7	100	6.7	9.0	2.3	69	7.3	8.3	1.0
mathematics												
Eddy	9	8	12	4	23	15	16	1	14	9	9	0
Central	19	3	16	13	20	12	12	0	10	3	9	6
Webber	18	13	13	0	22	5	6	1	21	9	9	0
System	46	6.1	13.7	7.6	65	9.2	10.6	1.4	45	6.6	8.4	1.8

TABLE C.1. hEAN PERCBITILE CAIM EY BULLDIMG AMD GRADE FOR ALL 2-4 PREVEITION PUPILS II READIMG AKD MATHIRATICS BASED OM APRIL-MAY, 1986 PRE-TESTIEG ARD APRIL-HAY, 1987 POST-IESTLIGG OI CAT (SPRIMG TO SPRING).

S 5 HOOL	Grade 2				Grade 3				Grade 4			
	Number Tested	Percentiles			Number Tested	Percentiles			Number Tested	Percentiles		
		Pre Mean	Post Mean	Mean Gain		Pre Mean	Post Mean	Mean Gain		Pre Mean	Post Mean	Mean Gain
READING												
Haley	13	15	36	21	8	21	24	3	25	17	33	16
Heavenrich	24		29	26	13	15	49	34	11	18	13	-5
Longfellow	15	8	15	7	21	18	27	9	11	19	12	-7
Rouse	14	6	13	7	27	17	33	16	11	16	18	2
System	66	6	22	16	69	18	33	15	58	17	21	4
MATHEMATICS												
Haley	13	35	51	16	8	38	39	1	25	36	43	7
Heavenrich	24	6	56	50	13	28	35	7	11	13	10	- 3
Longfellow	15	22	28	6	21	21	54	33	11	25	17	-8
Rouse	14	27	30	3	27	29	55	26	11	22	22	0
System	66	24	43	19	69	27	49	22	58	25	24	-1

52

[^0]: ***n:********
 *

[^1]: *Post-test percentile scores will evidence improvement over pre-test percentile scores.

[^2]: ${ }^{1}$ McRae, Douglas J., Hill's Handy Hints. McRae's Michigan Measurement Menos from Ann Arbor, 1986, 11, 3-4.

[^3]: *Counts of the Experimental Prevention Prco-am are included in this count at the four effected elementaries. See later pages in this appendix for the counts of the Experimental Prevention Program separately.

[^4]: *Counts of the Experimental Prevention Program are included in this counc at the four effected elementaries. See later pages in this appendix for the counts of the Experimental Prevention Program separately.

